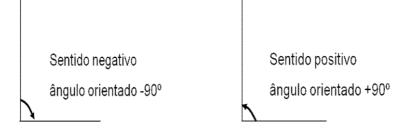

Isometria

ISOMETRIA: Transformação geométrica que preserva as distâncias entre pontos e consequentemente as amplitudes dos ângulos, transformando figuras noutras geometricamente iguais (congruentes).

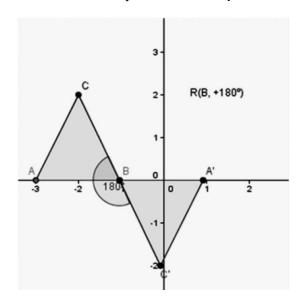
Quatro tipos fundamentais de isometrias:

- Rotação
- > Translação
- Reflexão
- Reflexão deslizante

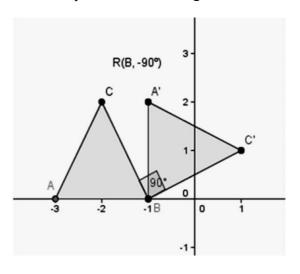
ROTAÇÃO: Consiste em rodar uma figura em torno de um ponto chamado centro de rotação (O). A distância dos pontos ao centro de rotação mantém-se constante.



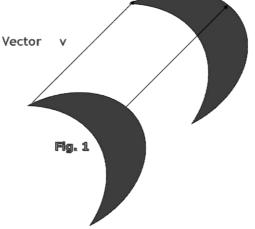
Numa rotação:


- um segmento de recta é transformado num segmento de recta geometricamente igual
- um ângulo é transformado noutro ângulo geometricamente igual e com o mesmo sentido

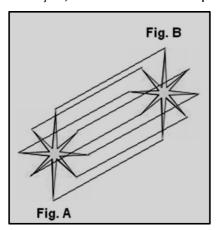
Uma <u>rotação</u> é uma transformação geométrica, associada a um ponto, o centro da rotação, e a um ângulo, cuja **amplitude** pode ser **positiva** ou **negativa** - ângulo orientado.


Deste modo, convencionou-se que o sentido contrário ao do movimento dos ponteiros de um relógio é o sentido positivo, enquanto que o sentido do movimento dos ponteiros de um relógio é o sentido negativo.

Rotação no sentido positivo



Rotação no sentido negativo



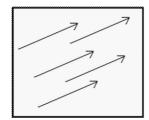
TRANSLAÇÃO: Deslocamento de uma figura segundo um vector que é caracterizado por uma

direcção, um sentido e um comprimento.

Em baixo, a **figura B** foi obtida da **figura A** deslocando todos os seus pontos segundo a mesma direcção, o mesmo sentido e percorrendo a mesma distância.

A figura B diz-se que foi obtida por translação da figura A.

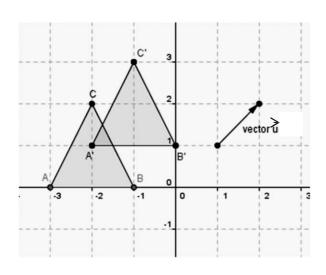
A figura A é a figura original (o objecto) e a figura B é a sua imagem através de uma translação.


Uma <u>translação</u> transforma uma figura numa outra figura geometricamente igual.

Todos os pontos da imagem resultam da figura original por um deslocamento dos seus pontos definido por:

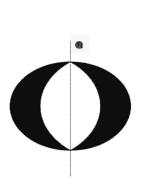
- uma direcção;
- um sentido;
- um comprimento

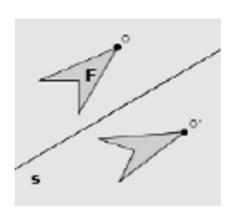
Um segmento de recta orientado (segmento de recta ao qual está associado um sentido uma direcção e um comprimento) representa um vector.

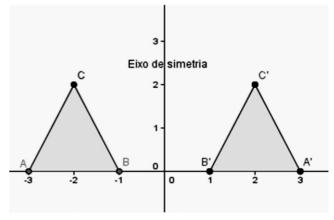


Todos os segmentos orientados que têm a mesma direcção, o mesmo sentido e o mesmo comprimento (norma) representam **o mesmo vector**.

Um vector fica então definido desde que se conheça:


- a direcção (que é dada pela recta onde esse vector se encontra: a recta suporte do vector)
- o sentido (um dos dois possíveis na direcção)
- o comprimento (ou norma)


Translação associada ao vector \overrightarrow{u}



- Uma translação transforma um segmento de recta num outro segmento de recta paralelo e geometricamente igual;
- Uma translação transforma um ângulo noutro ângulo geometricamente igual (com a mesma amplitude).
- Uma translação transforma uma figura noutra figura geometricamente igual.

REFLEXÃO: É a transformação geométrica que faz corresponder a cada ponto O do plano o ponto O' (imagem de O) de tal modo que a recta s é a mediatriz do segmento [OO']; se o ponto O pertence a s, a sua imagem coincide com O.

REFLEXÃO DESLIZANTE: A reflexão deslizante é a combinação de uma reflexão com uma translação.

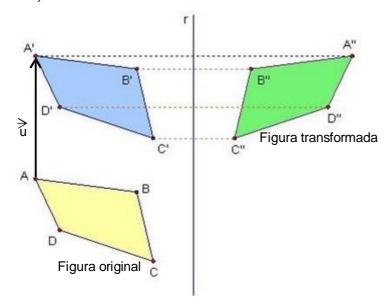


Figura final, quadrilátero [A''B''C''D''] sofreu uma translação associada ao vector u paralelo ao eixo r e, em seguida, sofre uma reflexão de eixo r.

SIMETRIAS

Há uma simetria para cada um dos quatro tipos de isometrias referidos.

- Simetria de rotação (ou simetria rotacional)
- Simetria de translação
- Simetria de reflexão (ou simetria axial)
- Simetria de reflexão deslizante

Falar de simetria é falar de simetria de uma figura .

Figura: um conjunto de pontos do plano ou do espaço.

Exemplos: Recta, rectângulo, esfera, desenho artístico, ...

Não tem sentido perguntar se as duas bonecas (duas figuras) são simétricas...

Embora possa perguntar-se se a boneca

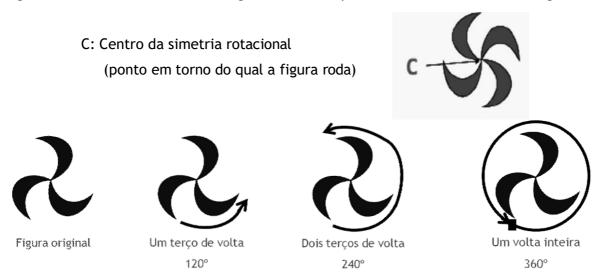
(uma figura) tem simetria.

Os quatro tipos de simetrias no plano

Um modelo é simétrico se houver pelo menos uma simetria (rotação, translação, reflexão, reflexão deslizante) que não muda o modelo, isto é, que deixa a figura globalmente invariante.

Simetria de rotação de uma figura

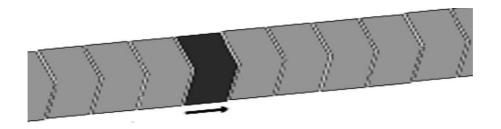
Existe, pelo menos, uma rotação com uma amplitude superior a 0° e inferior a 360° que deixa a figura globalmente invariante.


Podemos identificar isso...

... se conseguirmos girar a figura em torno de um ponto fixo, de modo a que a imagem resultante, através da rotação, coincida com a figura original.

O centro da simetria rotacional é o ponto em torno do qual a figura roda.

O ângulo da simetria rotacional é o ângulo orientado que descreve o movimento da figura

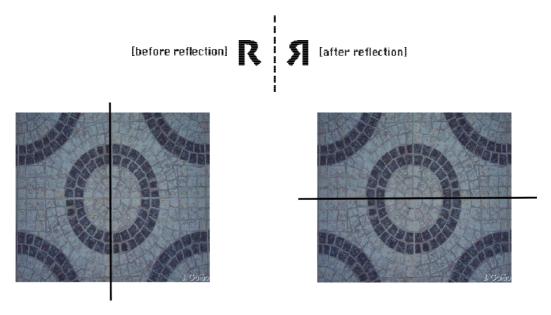

Ângulo da simetria rotacional: ângulo orientado que descreve o "movimento" da figura.

Simetria de translação de uma figura

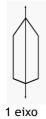
Existe, pelo menos, uma translação que deixa a figura globalmente invariante.

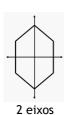
Como a reconhecemos?

- Se podemos movimentar a figura segundo uma dada distância e uma dada direção (identificadas pelo vector de translação) de tal modo que o seu transformado coincide com a figura original;
- Se a figura for infinita, existe essa possibilidade ...

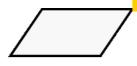

Simetria de reflexão de uma figura

Como a reconhecemos? Existem várias hipóteses:

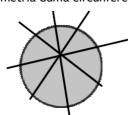

- Se conseguirmos dobrar a figura de tal modo que as duas partes obtidas se sobreponham exactamente;
- Se conseguirmos colocar um espelho ou mira sobre a figura de modo a que a junção da parte reflectida com a não reflectida seja exactamente igual à figura toda;
- Se recortarmos a figura e conseguirmos preencher exactamente o buraco que fica na folha com a parte recortada mas virada ao contrário (com a parte de baixo do papel virada para cima).

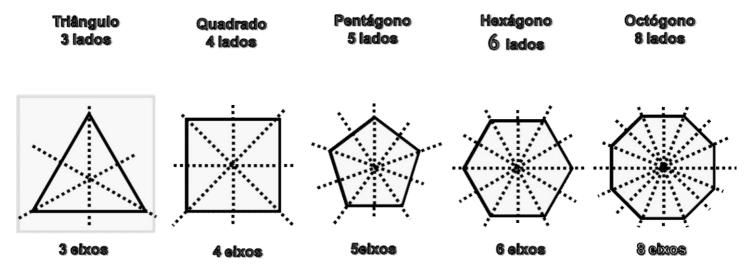


A <u>simetria de reflexão</u> também se designa por <u>simetria axial</u>; o eixo de reflexão também se designa por eixo de simetria ou linha de simetria

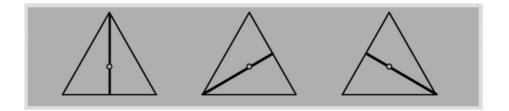


<u>Eixo de simetria</u> de uma figura é a recta sobre a qual se faz a dobra ou se coloca o espelho/mira que divide a figura ao meio de modo que uma metade da figura seja a reflexão da outra metade. Caso contrário, a recta não é eixo de simetria.

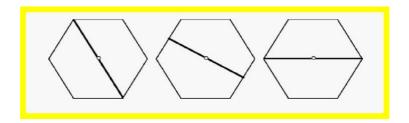



não tem eixos de simetria

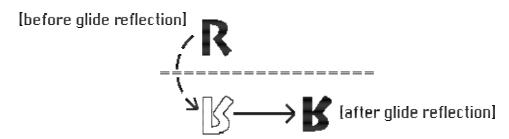
Os eixos de simetria duma circunferência são as rectas que passam pelo centro.

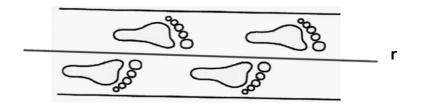


Uma circunferência tem uma infinidade de eixos de simetria.


Um polígono regular com n lados tem n eixos de simetria

Se o número de lados do polígono regular é impar, cada um dos eixos de simetria une um vértice ao ponto médio do lado oposto




> Se o número de lados do polígono regular é par, cada um dos eixos de simetria une dois vértices opostos ou une os pontos médios dos lados opostos

SIMETRIA DE REFLEXÃO DESLIZANTE

Uma simetria de reflexão deslizante combina uma reflexão com uma translação ao longo do sentido da linha do espelho. As reflexões deslizantes são os únicos tipos de simetria que envolvem mais de uma etapa.

Esta simetria de reflexão deslizante caracteriza-se por ser uma reflexão que envia a pegada direita para a esquerda seguida de um deslizamento que a faz avançar um passo.

- 1º A pegada sofre uma reflexão em torno da recta r.
- 2º A pegada sofre uma translação (na direcção e no sentido do vector indicado).

Notas finais:

As simetrias criam modelos que nos ajudam a organizar o nosso mundo conceitualmente. Os modelos simétricos ocorrem na natureza, são inventados por artistas, por músicos, por coreógrafos, e por matemáticos.

Nós trabalharemos aqui só com **simetrias planas**, aquelas que ocorrem no **plano**, mas podem ser generalizadas **às simetrias espaciais**, as que ocorrem no **espaço**.

A simetria plana consiste em mover todos os pontos sobre o plano de modo que suas posições relativas permaneçam as mesmas, embora suas posições absolutas possam mudar. **Distâncias, ângulos, tamanhos, e forma são preservadas pelas simetrias.**

BOM TRABALHO!